

GT.M V5.5-000
Page 2, March 20, 2012 FIS

Contact Information

GT.M Group
Fidelity Information Services, Inc.
2 West Liberty Boulevard, Suite 300
Malvern, PA 19355
United States of America

GT.M Support for customers: +1 (610) 578-4226
gtmsupport@fisglobal.com
Switchboard: +1 (610) 296-8877
Website: http://fis-gtm.com

Legal Notice

Copyright © 2012 Fidelity Information Services, Inc. All Rights Reserved

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts and
no Back-Cover Texts.

GT.M™ is a trademark of Fidelity Information Services, Inc. Other trademarks are the property of their respective owners.

This document contains a description of GT.M and the operating instructions pertaining to the various functions that comprise
the system. This document does not contain any commitment of FIS. FIS believes the information in this publication is accurate
as of its publication date; such information is subject to change without notice. FIS is not responsible for any errors or defects.

Revision History

Revision 1.1 20 March 2012 Improvements and corrections
in “Upgrade Replication Instance
File” (page 18) and “New
Qualifiers” (page 21) sections.

Revision 1.0 February 22, 2012 First published version.

http://fis-gtm.com
http://www.gnu.org/licenses/fdl.txt

FIS
GT.M V5.5-000

March 20, 2012, Page iii

Table of Contents
Summary ... 1
Motivation for Supplementary Instance Replication .. 3
Theory of Operation ... 5

Types of Sequence Numbers ... 6
Database Transaction Number ... 6
Journal Sequence Number ... 6
Stream Sequence Number ... 6

Examples ... 9
Simple Example ... 9
Ensuring Consistency with Rollback .. 10
Rollback Not Desired or Required by Application Design .. 11
Two Originating Primary Failures .. 12
Replication and Online Rollback .. 13

Limitations ... 15
Procedures .. 17

Overview ... 17
Upgrade Replication Instance File .. 18
Creating a Supplementary Instance .. 19
Starting / Resuming Replication ... 19
Changing the Replication Source ... 20

MUPIP Commands ... 21
Modified qualifiers .. 21
New Qualifiers ... 21

Error Messages and Recovery .. 25

GT.M V5.5-000
Page iv, March 20, 2012 FIS

FIS
GT.M V5.5-000

March 20, 2012, Page 1

Summary

Effective V5.5-000, FIS GT.M adds a new type of replication, called Supplementary Instance (SI) replication.
The previous sole replication mechanism is now called Business Continuity (BC) replication in order to
distinguish between them.

At the time of writing, V5.5-000 is the only GT.M release to support SI replication. Should later releases
exist when you peruse this technical bulletin, please read "V5.5-000 or later, as clarified or qualified by the
release notes for your release" for "V5.5-000" below.

In this document, unless more specifically designated, the term "transaction" refers to all TP transactions
- updates within TSTART/TCOMMIT brackets (with nested transactions, the outermost one), and all so-
called "mini transactions" - individual updates (Sets, Kills, and ZKills) not within TSTART/TCOMMIT
brackets.

GT.M V5.5-000
Page 2, March 20, 2012 FIS

FIS
GT.M V5.5-000

March 20, 2012, Page 3

Motivation for Supplementary Instance Replication

GT.M replication was originally intended to provide business continuity for systems of record. For example
with instances named Ardmore and BrynMawr, business logic processed on instance Ardmore can be
streamed to instance BrynMawr so that should Ardmore ever go down, BrynMawr can immediately take
over and provide continuity. In order to ensure that BrynMawr produces results consistent with Ardmore,
BrynMawr can contain only material state information that is also in Ardmore.1 To help ensure this
consistency, GT.M BC replication prohibits locally generated database updates on a replicating secondary
instance. Because they are conceptually part of atomic updates from the originating primary instance,
GT.M triggers on replicating secondary instances are computed and committed locally.

Now consider an application such as running a report. This may require database updates including
calculating and storing aggregates, statistics and interim results, or perhaps just to record the fact that the
report was run. With traditional BC Replication, to offload such reporting from the originating primary
instance is not a simple matter of running it on a replicating secondary instance, since updates are not
permitted on replicating secondary instances.

SI replication allows replication from an instance (either Ardmore or BrynMawr in the example above) to
another originating primary instance, Malvern. Malvern can execute its own business logic, computing and
committing its own updates to its database, while receiving a replication stream. In turn, BC Replication
from Malvern can provide it with its own replicating secondary instance, Newtown. In this example, only
originating primary instances Ardmore and Malvern can execute business logic and compute database
updates. Replicating secondary instances BrynMawr and Newtown are only permitted to receive and apply
replication streams from their originating primary instances.

SI replication is intended to be a general purpose mechanism whose utility includes applications such as
real-time decision support, warehousing, analytics and auditing.

1Non-material information in the database may be information that identifies the instance, local process ids, system load, etc.

GT.M V5.5-000
Page 4, March 20, 2012 FIS

FIS
GT.M V5.5-000

March 20, 2012, Page 5

Theory of Operation

This section presupposes an understanding of GT.M database replication and Logical Multi-Site (LMS)
application configurations.

In order to create applications that remain available in the face of system and network failure, GT.M
replication is asynchronous, which in turn means that the source and receiver ends of a replication
connection are at an identical state only when there is no activity underway. To maintain consistency, and
to restore it when restarting a replication connection, instances maintain a common, mutually coherent,
instance-wide serial number called a journal sequence number. Since replication deals with an entire
global variable name space, regardless of the mapping of global variables to database files, all updates
participate in this numbering, even when modifying different database files.

When an originating primary instance and a replicating secondary instance connect, they establish the
latest shared transaction (that is, the latest transaction they both have in common in their databases).
If the instance configured as the secondary has any transactions in its database subsequent to that last
transaction shared with the instance that is to be the primary, it rolls its database back to that last common
transaction before beginning replication. The transactions that are rolled back go into an Unreplicated
Transaction Log (previously known as a Lost Transaction File, a name we are retaining so as to not cause
regressions). Identifying the common point for this rollback requires mutually coherent transaction
ordering. Journal sequence numbers, while providing coherent transaction for BC replication do not suffice
for SI replication.

To augment this capability for SI replication, journal sequence numbers are tagged with their origin- a
stream # that can take on values 0 through 15 - and a stream sequence number - the journal sequence
number of the update on the originating instance. Thus, of the journal sequence numbers in Malvern
say 100, 101, and 102, if the first and third transactions are locally generated and the second is replicated,
the tagged journal sequence numbers might be something like {100,0,10}, {101,1,18}, {102,0,11}. The 0
stream # for 100 and 102 indicates those transactions are generated locally on Malvern whereas stream # 1
indicates those transactions were generated in Ardmore. It is important to note that if, as part of restarting
replication with Ardmore, Malvern needs to roll {101,1,18} off its database, database update serialization
also requires it to roll {102,0,11} off as well, and both will appear in the Unreplicated Transactlon Log.

The same transaction that has a Malvern sequence number of 101 will have a different sequence number
of 18 on Ardmore and BrynMawr. That is, the journal sequence number on Ardmore becomes the stream
sequence number on Malvern. The replication instance file in Malvern contains information that allows
GT.M to determine this mapping, so that when Malvern rolls {101,1,18} off its database, Ardmore knows
that Malvern has rolled off Ardmore’s transaction 18.

If Malvern in turn implements BC replication to another instance Newtown, the tagging is propagated
to Newtown, such that if Ardmore and Malvern both go down (e.g., if they are co-located in a data
center that loses electricity), BrynMawr and Newtown can take over the functions of Ardmore and
Malvern respectively, and Newtown can perform any synchronization needed in order to start accepting
a replication stream from BrynMawr. as being a continuation of the updates generated by Ardmore, and
BrynMawr in turn accepts Newtown as the successor to Malvern.

Theory of Operation Types of Sequence Numbers

GT.M V5.5-000
Page 6, March 20, 2012 FIS

Types of Sequence Numbers

SI replication adds additional types of update related sequence numbers to those already in GT.M. This is
an attempt to summarize in one place what they are and how they are related.

Database Transaction Number

Every transaction applied to a database file increments the database transaction number for that file.
Each block records the database transaction number at which it was updated, and the Current transaction
field in the file header shows the value for the next transaction or mini-transaction to use. The following
database file header fields all show database transaction numbers: Last Record Backup, Last Database
Backup, Last Bytestream Backup, Maximum TN, and Maximum TN Warn.

Database transaction numbers are currently unsigned 64-bit integers.

While database activity uses database transaction numbers sequentially, not every transaction number
can be found in a database block. For a Kill increments the database transaction number, but can remove
blocks with earlier database transaction numbers from the database.

Note that database transaction numbers are updated in memory and only periodically flushed to secondary
storage, so in cases of abnormal shutdown, the on-disk copies in the file header might be somewhat out-of-
date.

Journal Sequence Number

While the database transaction number is specific to a database file, replication imposes a serialization of
transactions across all replicated regions. As each transaction is placed in the Journal Pool it is assigned the
next journal sequence number. When a database file in a replicated instance is updated, the Region Seqno
field in the file header records the journal sequence number for that transaction. The journal sequence
number for an instance is the maximum Region Seqno of any database file in that instance. While it uses
them in processing, GT.M stores journal sequence numbers only in journal files. In database file headers,
Zqgblmod Seqno and Zqgblmod Trans are journal sequence numbers.

Except for transactions in Unreplicated Transaction Logs, the journal sequence number of a transaction
uniquely identifies that transaction on the originating primary instance and on all replicating secondary
instances. When replicated via SI replication, the journal sequence number becomes a stream sequence
number (see below) and propagated downstream, thus maintaining the unique identity of each transaction.

Journal sequence numbers cannot have holes - missing journal sequence numbers are evidence of
abnormal database activity, including possible manual manipulation of the transaction history or database
state.

Journal sequence numbers are 60-bit unsigned integers.

Stream Sequence Number

The receiver of a SI replication stream has both transactions that it receives via replication as well as
transactions that it computes locally from business logic. As discussed earlier, while journal sequence

Types of Sequence Numbers Theory of Operation

FIS
GT.M V5.5-000

March 20, 2012, Page 7

numbers can uniquely identify a series of database updates, they cannot identify the source of those
updates. Thus, V5.5-000 introduces the concept of a stream sequence number.

On an originating primary instance that is not the recipient of an SI replication stream, the journal
sequence number and the stream sequence number are the same.

On a primary instance that is the recipient of an SI replication stream, the journal sequence number
continues to uniquely identify and serialize all updates, whether received from replication or locally
generated. However, there is also a stream sequence number, which is the journal sequence number for
locally generated transactions, and for replicated updates, the combination of a non-zero 4 bit tag (i.e., with
values 1 through 15) and the journal sequence number for the transaction on the system from which it was
replicated. These stream sequence numbers are propagated to downstream replicating secondary instances.

Stream sequence numbers are 64-bit unsigned integers.

GT.M V5.5-000
Page 8, March 20, 2012 FIS

FIS
GT.M V5.5-000

March 20, 2012, Page 9

Examples

To make the following scenarios easier to understand, each update is prefixed with the system where
it was originally generated and the sequence number on that system and any BC replicating secondary
instances.

Simple Example

The three systems initially operate in roles O (Originating primary instance), R (BC Replicating secondary
instance) and S (recipient of an SI replication stream).

Ardmore BrynMawr Malvern Comments

O: ... A95, A96,
A97, A98, A99

R: ... A95, A96,
A97, A98

S: ... M34, A95,
M35, M36, A96,
A97, M37, M38

Ardmore as an originating primary instance at
transaction number A99, replicates to BrynMawr as a
BC replicating secondary instance at transaction number
A98 and Malvern as a SI that includes transaction
number A97, interspersed with locally generated
updates. Updates are recorded in each instance's journal
files using before-image journaling.

Crashes O: ... A95, A96,
A97, A98, B61

... M34, A95,
M35, M36, A96,
A97, M37, M38

When an event disables Ardmore, BrynMawr becomes
the new originating primary, with A98 as the latest
transaction in its database, and starts processing
application logic to maintain business continuity. In
this case where Malvern is not ahead of BrynMawr,
the Receiver Server at Malvern can remain up after
Ardmore crashes. When BrynMawr connects, its
Source Server and Malvern’s Receiver Server confirms
that BrynMawr is not behind Malvern with respect to
updates received from Ardmore, and SI replication from
BrynMawr picks up where replication from Ardmore
left off.

- O: ... A95, A96,
A97, A98, B61,
B62

S: ... M34, A95,
M35, M36, A96,
A97, M37, M38,
A98, M39, B61,
M40

Malvern operating as a supplementary instance
to BrynMawr replicates transactions processed on
BrynMawr, and also applies its own locally generated
updates. Although A98 was originally generated on
Ardmore, Malvern received it from BrynMawr because
A97 was the common point between BrynMawr and
Malvern.

... A95, A96, A97,
A98, A99

O: ... A95, A96,
A97, A98, B61,
B62, B63, B64

S: ... M34, A95,
M35, M36, A96,
A97, M37, M38,
A98, M39, B61,
M40, B62, B63

Malvern, continuing as a supplementary instance
to BrynMawr, replicates transactions processed on
BrynMawr, and also applies its own locally generated
updates. Ardmore meanwhile has been repaired and
brought online. It has to roll transaction A99 off its

Examples Ensuring Consistency with Rollback

GT.M V5.5-000
Page 10, March 20, 2012 FIS

Ardmore BrynMawr Malvern Comments

database into an Unreplicated Transaction Log before it
can start operating as a replicating secondary instance to
BrynMawr.

R: ... A95, A96,
A97, A98, B61,
B62, B63, B64

O: ... A95, A96,
A97, A98, B61,
B62, B63, B64,
B65

S: ... M34, A95,
M35, M36, A96,
A97, M37, M38,
A98, M39, B61,
M40, B62, B63,
M41, B64

Having rolled off transactions into an Unreplicated
Transaction Log, Ardmore can now operate as a
replicating secondary instance to BrynMawr. This is
normal BC Logical Multi-Site operation. BrynMawr
and Malvern continue operating as originating primary
instance and supplementary instance.

Ensuring Consistency with Rollback

Whereas in the last example Malvern was not ahead when starting SI replication from BrynMawr, in
this example, asynchronous processing has left it ahead and must rollback its database state before it can
receive the replication stream.

Ardmore BrynMawr Malvern Comments

O: ... A95, A96,
A97, A98, A99

R: ... A95, A96,
A97

S: ... M34, A95,
M35, M36, A96,
A97, M37, M38,
A98, M39, M40

Ardmore as an originating primary instance at
transaction number A99, replicates to BrynMawr as a
BC replicating secondary instance at transaction number
A97 and Malvern as a SI that includes transaction
number A98, interspersed with locally generated
updates. Updates are recorded in each instance's journal
files using before-image journaling.

Crashes O: ... A95, A96,
A97

... M34, A95,
M35, M36, A96,
A97, M37, M38,
A98, M39, M40

When an event disables Ardmore, BrynMawr becomes
the new originating primary, with A97 the latest
transaction in its database. Malvern cannot immediately
start replicating from BrynMawr because the database
states would not be consistent - while BrynMawr does
not have A98 in its database and its next update may
implicitly or explicitly depend on that absence, Malvern
does, and may have relied on A98 to compute M39 and
M40.

- O: ... A95, A96,
A97, B61, B62

S: ... M34, A95,
M35, M36, A96,
A97, M37, M38,
B61

For Malvern to accept replication from BrynMawr,
it must roll off transactions generated by Ardmore,
(in this case A98) that BrynMawr does not have in
its database, as well as any additional transactions
generated and applied locally since transaction number
A98 from Ardmore.a This rollback is accomplished
with a mupip journal -rollback -fetchresync operation
on Malvern.b These rolled off transactions (A98, M39,
M40) go into the Unreplicated Transaction Log and
can be subsequently reprocessed by application code.c

Once the rollback is completed, Malvern can start
accepting replication from BrynMawr.d BrynMawr in

Rollback Not Desired or Required by Application Design Examples

FIS
GT.M V5.5-000

March 20, 2012, Page 11

Ardmore BrynMawr Malvern Comments

its Originating Primary role processes transactions and
provides business continuity, resulting in transactions
B61 and B62.

- O: ... A95, A96,
A97, B61, B62,
B63, B64

S: ... M34, A95,
M35, M36, A96,
A97, M37, M38,
B61, B62, M39a,
M40a, B63

Malvern operating as a supplementary instance
to BrynMawr replicates transactions processed on
BrynMawr, and also applies its own locally generated
updates. Note that M39a & M40a may or may not be the
same updates as the M39 & M40 previously rolled off the
database.

aAs this rollback is more complex, may involve more data than the regular LMS rollback, and may involve reading journal records
sequentially; it may take longer.
bIn scripting for automating operations, there is no need to explicitly test whether BrynMawr is behind Malvern - if it is behind, the
Source Server will fail to connect and report an error, which automated shell scripting can detect and effect a rollback on Malvern
followed by a reconnection attempt by BrynMawr. On the other hand, there is no harm in Malvern routinely performing a rollback
before having BrynMawr connect - if it is not ahead, the rollback will be a no-op. This characteristic of replication is unchanged from
releases prior to V5.5-000.
cGT.M's responsibility for them ends once it places them in the Unreplicated Transaction Log.
dUltimately, business logic must determine whether the rolled off transactions can simply be reapplied or whether other reprocessing
is required. GT.M's $ZQGBLMOD() function can assist application code in determining whether conflicting updates may have
occurred.

Rollback Not Desired or Required by Application Design

In the example above, for Malvern to start accepting SI replication from BrynMawr with consistency
requires it to rollback its database because it is ahead of BrynMawr. There may be applications where the
design of the application is such that this rollback neither required nor desired. GT.M provides a way for SI
replication to start in this situation without rolling transactions off into an Unreplicated Transaction File.

Ardmore BrynMawr Malvern Comments

O: ... A95, A96,
A97, A98, A99

R: ... A95, A96,
A97

S: ... M34, A95,
M35, M36, A96,
A97, M37, M38,
A98, M39, M40

Ardmore as an originating primary instance at
transaction number A99, replicates to BrynMawr as a
BC replicating secondary instance at transaction number
A97 and Malvern as a SI that includes transaction
number A98, interspersed with locally generated
updates. Updates are recorded in each instance's journal
files using before-image journaling.

Crashes O: ... A95, A96,
A97, B61, B62

... M34, A95,
M35, M36, A96,
A97, M37, M38,
A98, M39, M40

When an event disables Ardmore, BrynMawr becomes
the new originating primary, with A97 the latest
transaction in its database and starts processing
application logic. Unlike the previous example, in
this case, application design permits (or requires)
Malvern to start replicating from BrynMawr even
though BrynMawr does not have A98 in its database and
Malvern may have relied on A98 to compute M39 and
M40.

Examples Two Originating Primary Failures

GT.M V5.5-000
Page 12, March 20, 2012 FIS

Ardmore BrynMawr Malvern Comments

- O: ... A95, A96,
A97, B61, B62

S: ... M34, A95,
M35, M36, A96,
A97, M37, M38,
A98, M39, M40,
B61, B62

With its Receiver Server started with the -noresync
option, Malvern can receive a SI replication stream from
BrynMawr, and replication starts from the last common
transaction shared by BrynMawr and Malvern. Notice
that on BrynMawr no A98 precedes B61, whereas it does
on Malvern, i.e., Malvern was ahead of BrynMawr with
respect to the updates generated by Ardmore.

Two Originating Primary Failures

Now consider a situation where Ardmore and Malvern are located in one data center, with BC replication
to BrynMawr and Newtown respectively, located in another data center. When the first data center fails,
the SI replication from Ardmore to Malvern is replaced by SI replication from BrynMawr to Newtown.

Ardmore BrynMawr Malvern Newtown Comments

O: ... A95, A96,
A97, A98, A99

R: ... A95, A96,
A97, A98

S: ... M34, A95,
M35, M36, A96,
M37, A97, M38

R: ... M34, A95,
M35, M36, A96,
M37

Ardmore as an originating primary
instance at transaction number
A99, replicates to BrynMawr
as a BC replicating secondary
instance at transaction number
A98 and Malvern as a SI that
includes transaction number A97,
interspersed with locally generated
updates. Malvern in turn replicates
to Newtown.

Goes down with
the data center

O: ... A95, A96,
A97, A98, B61,
B62

Goes down with
the data center

... M34, A95,
M35, M36, A96,
M37

When a data center outage disables
Ardmore, and Malvern, BrynMawr
becomes the new originating
primary, with A98 as the latest
transaction in its database and
starts processing application logic
to maintain business continuity.
Newtown can receive the SI
replication stream from BrynMawr,
without requiring a rollback since
the receiver is not ahead of the
source.

- O: ... A95, A96,
A97, A98, B61,
B62

- S: ... M34, A95,
M35, M36, A96,
M37, A97, A98,
N73, B61, N74,
B62

Newtown receives SI replication
from BrynMawr and also applies
its own locally generated updates.
Although A97 and A98 were
originally generated on Ardmore,
Newtown receives them from
BrynMawr. Newtown also computes

Replication and Online Rollback Examples

FIS
GT.M V5.5-000

March 20, 2012, Page 13

Ardmore BrynMawr Malvern Newtown Comments

and applies locally generated
updates

... A95, A96, A97,
A98, A99

O: ... A95, A96,
A97, B61, B62,
B63, B64

... M34, A95,
M35, M36, A96,
M37, A97, M38

S: ... M34, A95,
M35, M36, A96,
M37, A97, A98,
N73, B61, N74,
B62, N75, B63,
N76, B64

While BrynMawr and Newtown,
keep the enterprise in operation, the
first data center is recovered. Since
Ardmore has transactions in its
database that were not replicated to
BrynMawr when the latter started
operating as the originating primary
instance, and since Malvern had
transactions that were not replicated
to Newtown when the latter took
over, Ardmore and Malvern must
now rollback their databases and
create Unreplicated Transaction
Files before receiving BC replication
streams from BrynMawr and
Newtown respectively. Ardmore
rolls off A98 and A99, Malvern rolls
off A97 and M38.

R: ... A95, A96,
A97, B61, B62,
B63, B64

O: ... A95, A96,
A97, B61, B62,
B63, B64, B65

R: ... M34, A95,
M35, M36, A96,
M37, A97, A98,
N73, B61, N74,
B62, N75, B63,
N76, B64

S: ... M34, A95,
M35, M36, A96,
M37, A97, A98,
N73, B61, N74,
B62, N75, B63,
N76, B64, N77

Having rolled off transactions into
an Unreplicated Transaction Log,
Ardmore can now operate as a
replicating secondary instance
to BrynMawr. This is normal
BC Logical Multi-Site operation.
BrynMawr and Malvern continue
operating as originating primary
instance and supplementary
instance. Note that having rolled
A97 off its database, Malvern
receives that transaction from
Newtown as it catches up.

Replication and Online Rollback

GT.M V5.5-000 also introduces a mupip journal -rollback -backward -online feature that allows a database
to be rolled back in state space while an application is in operation. This functionality is discussed in the
release notes. Consider the following example where Ardmore rolls back its database.

Ardmore BrynMawr Malvern Comments

O: ... A95, A96,
A97, A98, A99

R: ... A95, A96,
A97

S: ... M34, A95,
M35, M36, A96,
A97, M37, M38,
A98, M39, M40

Ardmore as an originating primary instance at
transaction number A99, replicates to BrynMawr as a
BC replicating secondary instance at transaction number
A97 and Malvern as a SI that includes transaction

Examples Replication and Online Rollback

GT.M V5.5-000
Page 14, March 20, 2012 FIS

Ardmore BrynMawr Malvern Comments

number A98, interspersed with locally generated
updates. Updates are recorded in each instance’s journal
files using before-image journaling.

Rolls back to
A96 with A97
through A99 in
the Unreplicated
Transaction Log

Rolls back
automatically
to A96 (assume
Receiver Server
started with -
autorollback
- refer to the
V5.5-000 Release
Notes for details.

- Instances receiving a replication stream from Ardmore
can be configured to rollback automatically when
Ardmore performs an online rollback by starting
the Receiver Server with -autorollback. If Malvern’s
Receiver Server is so configured, it will roll A97 through
M40 into an Unreplicated Transaction Log. This scenario
is straightforward. But with the -noresync qualifier,
the Receiver Server can be started configured to simply
resume replication without rolling back, and that
scenario is developed here.

O: ... A95, A96,
A97a, A98a,
A99a

R: ... A95, A96,
A97a, A98a

S: ... M34, A95,
M35, M36, A96,
A97, M37, M38,
A98, M39, M40,
A97a, M41,
A98a, M42

Transactions A97a through A99a are different
transactions from A97 through A99 (which are in an
Unreplicated Transaction File on Ardmore and must be
reprocessed). Note that Malvern has both the original
A97 and A98 as well as A97a and A98a. A99 was never
replicated to Malvern - Ardmore rolled back before it
was replicated, and A99a has not yet made it to Malvern
(it will soon, unless Ardmore rolls back again)

FIS
GT.M V5.5-000

March 20, 2012, Page 15

Limitations

SI replication is only supported on POSIX editions of GT.M - in other words, it is not supported by GT.M
on OpenVMS. Furthermore, with this release, GT.M no longer supports replication between OpenVMS
and POSIX platforms, or on POSIX platforms with GT.M releases prior to V5.1-000. To upgrade to GT.M
V5.5-000, or to upgrade from GT.M on OpenVMS to GT.M V5.5-000 on a POSIX platform, first upgrade to
GT.M V5.1-000 or later on a POSIX platform as an intermediate step.

Although a receiver of SI replication can source a BC replication stream for downstream propagation, it
cannot source an SI replication stream. So, in the example above, while Malvern can receive SI replication
from Ardmore or BrynMawr, and it can source a BC replication stream to Newtown, which can in turn
source a BC replication stream to Oxford. Thus, none of Malvern, Newtown or Oxford can source an SI
replication stream.

Also an instance can only receive a single SI replication stream. Malvern cannot receive SI replication
from an instance other than Ardmore (or an instance receiving BC replication from Ardmore, such as
BrynMawr). Newtown or Oxford are replicating secondary instances and can receive no updates other than
from Malvern.

The total number of replication streams that an instance can source is sixteen, with any combination of BC
and SI replication.

GT.M V5.5-000
Page 16, March 20, 2012 FIS

FIS
GT.M V5.5-000

March 20, 2012, Page 17

Procedures

Overview

Although V5.5-000 supports only one source stream for SI replication, the architecture allows for fifteen
externally sourced streams (numbers 1 through 15), with stream 0 being locally generated updates. Under
normal conditions, on a supplementary instance, one will see updates from streams 0 and 1. If the recipient
of an SI stream has been moved from receiving replication from one source to another, you may see other
stream numbers (corresponding to updates from other streams) as well.

When adding SI replication, the rules to remember are that (a) both source and receiver sides of SI
replication must be V5.5-000, (b) upgrading an instance to V5.5-000 requires a new replication instance file
because the replication instance file format for SI is not compatible with those of prior releases and (c) the -
updateresync qualifier requires the name of a prior replication instance file when both source and receiver
are V5.5-000.

Remember that except where an instance is an unreplicated sole instance, you should upgrade replicating
secondary instances rather than originating primary instances. Starting with BC replication (e.g., Ardmore
as originating primary and BrynMawr as replicating secondary), the simplest steps to start SI replication to
Malvern are:

• Bring BrynMawr down and upgrade it to V5.5-000. BrynMawr requires a new replication instance file.
Please refer to the relevant release notes for details of upgrading database files and global directories;
unless otherwise instructed by FIS, always assume that object and journal files are specific to each GT.M
release.

• Resume BC replication from Ardmore to BrynMawr. Since Ardmore is at an older GT.M release than
V5.5-000, when starting the Receiver Server for the first time at BrynMawr, the -updateresync qualifier
does not require the name of a prior replication instance file.

• Create supplementary instance Malvern from a backup of BrynMawr or Ardmore, if that is more
convenient. Malvern will require a new replication instance file, created with the -supplementary
qualifier.

• Start SI replication from BrynMawr to Malvern. Since Malvern and BrynMawr are both V5.5-000, the -
updateresync qualifier used when the Malvern Receiver Server starts for the first time requires the old
replication instance file copied, perhaps as part of a BACKUP, up from BrynMawr as its value.

At your convenience, once BrynMawr is upgraded you can:

• Switchover so that BrynMawr is the originating primary instance with BC replication to Ardmore
and SI replication to Malvern. This is unchanged from current LMS procedures. SI replication from
BrynMawr to Malvern can operate through the switchover.

• Bring Ardmore down and upgrade it to V5.5-000. It requires a new replication instance file.

Procedures Upgrade Replication Instance File

GT.M V5.5-000
Page 18, March 20, 2012 FIS

• Start BC replication from BrynMawr to Ardmore. Since Ardmore and BrynMawr are both V5.5-000, the
-updateresync qualifier for Ardmore’s first Receiver Server start requires the name of a prior replication
instance file. As it cannot use Ardmore’s pre-V5.5-000 format replication instance file, in this special
case, use a backup copy from BrynMawr as that prior file.

Upgrade Replication Instance File

To upgrade the replication instance file, perform the following steps:

• Shut down all mumps, MUPIP and DSE processes except Source and Receiver Server processes; then
shut down the Receiver Server (and with it, the Update Process) and all Source Server processes.
Use MUPIP RUNDOWN to confirm that all database files of the instance are closed and there are no
processes accessing them.

• Rename the existing replication instance file after making a backup copy.

• Create a new replication instance file (you need to provide the instance name and instance file name,
either with command line options or in environment variables, as documented in the Administration
and Operations Guide):

• If this is instance is to receive SI replication (Malvern in the examples above) or to receive BC
replication from an instance that receives SI replication (Newtown in the examples above), use the
command:

 mupip replicate -instance_create -supplementary

• Otherwise use the command:

mupip replicate -instance_create

• Prepare it to accept a replication stream:

• Start a passive Source Server using the -updok flag.

• Start the Receiver Server using the updateresync flag, e.g.: mupip replicate -receiver -start -
updateresync=filename flag where filename is the prior replication file if the source is V5.5-000 and
no filename if it is an older GT.M release (with other required command line flags, as documented in
the Administration and Operations Guide).

• Start a Source Server on a root or propagating primary instance to replicate to this instance. Verify that
updates on the source instance are successfully replicated to the receiver instance.

The -updateresync qualifier indicates that instead of negotiating a mutually agreed common starting point
for synchronization the operator is guaranteeing the receiving instance has a valid state that matches the
source instance currently or as some point in the past. Generally this means the receiving instance has just
been updated with a backup copy from the source instance.

A GT.M V5.5-000 instance can source a BC replication stream to or receive a BC replication stream
from older GT.M releases, subject to limitations as discussed in the Limitations section of this
document. It is only for SI replication that both source and recipient must both be V5.5-000.

Creating a Supplementary Instance Procedures

FIS
GT.M V5.5-000

March 20, 2012, Page 19

Creating a Supplementary Instance

A supplementary instance cannot be the first or sole instance that you upgrade to V5.5-000 - you must
already have created an instance running V5.5-000 to provide a replication stream to the supplementary
instance.

You can create a supplementary instance from (a) a backup copy of another instance, a supplementary
instance, an originating primary or replicating secondary by giving it a new identity, or (b) a freshly
created, new instance. An instance used to create a supplementary instance must already be upgraded to
V5.5-000.

Starting with a backup of another instance, follow the procedures above under Upgrade Replication
Instance File using the -supplementary flag to the mupip replicate -instance_create command.

Creating a supplementary instance from a backup of an existing instance creates an SI replication instance
with all the database state in the existing instance and is perhaps the most common application need.
But there may be situations when a supplementary instance only needs new data, for example if it is to
provide a reporting service only for new customers, and historical data for old customers is just excess
baggage. In this case, you can also create a supplementary instance by creating a new instance, pre-loading
it with any data required, enabling replication for the database files (since an Update Process will only
apply updates to a replicated - and journaled - database region), and following the procedures above
under above under Upgrade Replication Instance File using the -supplementary=on flag to the mupip
replicate -instance_create command. Ship a replication instance file from the source to provide the -
updateresync=filename qualifier required when starting the Receiver Server for the first time.

Starting / Resuming Replication

For starting SI replication on an originating primary supplementary instance (Malvern in the above
example), the procedure is similar to a non-supplementary instance except that one also needs to start a
receiver server (after having started a source server to set up the journal pool) to receive updates from
the corresponding non-supplementary instance (Ardmore or BrynMawr in this case). Similarly, as part of
shutting down the originating primary supplementary instance, an added step is to shut down the Receiver
Server (if it is up and running) before shutting down the Source Server.

Remember that for GT.M replication, the Receiver Server listens at a TCP port and the Source Server
connects to it. If the Receiver Server is not ahead of the Source Server, replication simply starts and streams
updates from the source to the receiver. When the Receiver Server is ahead of the Source Server, the cases
are different for BC and SI replication.

For either BC or SI replication, if the Receiver Server is started with the new -autorollback qualifier, it
performs an online rollback of the receiving instance, so that it is not ahead of the originating instance,
creating an Unreplicated Transaction Log of any transactions that are rolled off the database. When started
without the -autorollback qualifier, a Receiver Server notified by its Source Server of a rollback, logs the
condition and exits so an operator can initiate appropriate steps.

For SI replication the new -noresync qualifier tells the Receiver Server not to rollback the database even
if the receiver is ahead of the source. In this case, the Source Server starts replication from the last journal
sequence number common to the two instances.

Procedures Changing the Replication Source

GT.M V5.5-000
Page 20, March 20, 2012 FIS

Changing the Replication Source

When changing the source of a supplementary replication stream to another in the same family of
instances (for example in the example where Ardmore and Malvern crash and Newtown is to receive
a replication stream from BrynMawr, start the Receiver Server normally (with either -autorollback or -
noresync, as appropriate) and allow BrynMawr to connect to it. Instead of using -autorollback, you can
also perform a mupip journal -rollback -backward -fetchresync before starting the Receiver Server.

To migrate a supplementary instance from receiving SI replication from one set of BC instances to a
completely different set - for example, if Malvern is to switch from receiving SI replication from the set of
{Ardmore, BrynMawr} to a completely unrelated set of instances {Pottstown, Sanatoga}

FIS
GT.M V5.5-000

March 20, 2012, Page 21

MUPIP Commands

SI replication adds and modifies qualifiers to the MUPIP REPLICATE and MUPIP JOURNAL commands.

Modified qualifiers

-updateresync=filename

Used when starting a Receiver Server on an instance where the replication instance file has no history
records (usually because the instance file was newly created). The -updateresync qualifier now requires
the file name of a replication instance file if the source of the replication stream is running GT.M V5.5-000
or higher, but not if the source is running a GT.M release prior to GT.M V5.5-000. This helps the Receiver
Server by using history records from the input instance file (instead of the receiver instance file which
has no history records) to exchange history information with the source and ensure both instances are
in sync before safely starting replication. Previously there was no verification of history records in case
of -updateresync usage and this opened up a safely hole in GT.M replication. For example, in the case
where a receiver of an SI replication stream is started for the first time (the receiver and source have not
communicated since the receiver replication instance file was created), this qualifier requires the name
of a replication instance file (which is not the current replication instance file of the secondary instance)
that is obtained from a backup of the source instance (taken at the same time the source databases were
backed up). In this case, the Receiver Server startup should happen only after ensuring the backed up
source database has been loaded onto the receiver instance. Once the receiver (started with -updateresync)
and source connect, the Update Process logs a message containing the string "New History Content". The
-updateresync should no longer be used for future Receiver Server startups. Note that the updateresync
qualifier is not upward compatible from older releases of GT.M that never required a file name. Although
FIS tries hard to keep GT.M upward compatible, our judgment is that this incompatibility represents the
best option for adding the new SI replication functionality as well as enhancing the robustness of existing
BC replication. Note that this qualifier was needed only in uncommon situations in GT.M V5.5-000 and
prior releases. V5.5-000 make the need even more uncommon by eliminating it in the case where the
instance has been recreated using a backup of another instance. This is because of a change to mupip replic
-editinstance command which now supports a -name qualifier. For more details, refer to GT.M V5.5-000
Release notes.

New Qualifiers

-autorollback

Used when starting a Receiver Server. The command mupip replicate -receiver -start -autorollback allows
the receiving instance of SI or BC replication to roll back as required when the source instance rolls back
with a mupip journal -rollback -backward command. For more information on this flag, refer to GT.M
V5.5-000 Release notes.

As autorollback uses mupip online rollback under the covers, it should be considered field test grade
functionality as long as that function is considered field test grade functionality.

http://tinco.pair.com/bhaskar/gtm/doc/articles/GTM_V5.5-000_Release_Notes.html
http://tinco.pair.com/bhaskar/gtm/doc/articles/GTM_V5.5-000_Release_Notes.html
http://tinco.pair.com/bhaskar/gtm/doc/articles/GTM_V5.5-000_Release_Notes.html
http://tinco.pair.com/bhaskar/gtm/doc/articles/GTM_V5.5-000_Release_Notes.html

MUPIP Commands New Qualifiers

GT.M V5.5-000
Page 22, March 20, 2012 FIS

-noresync -

Used when starting a Receiver Server. The command mupip replicate -receiver -start -noresync instructs
the Receiver Server to accept a SI replication stream even when the receiver is ahead of the source. In
this case, the source and receiver servers exchange history records from the replication instance file to
determine the common journal stream sequence number and replication resumes from that point onwards.
Specifying -noresync on a BC replication stream is disallowed with a NORESYNCSUPPLONLY error. Use
of -noresync on a SI replication stream receiver server where the receiving instance was started with -
UPDNOTOK (updates are disabled) is disallowed with a NORESYNCUPDATERONLY error. Note also
that the noresync qualifier is not the opposite of the resync qualifier of rollback (mupip journal -rollback -
resync), which is intended for use under the direction of FIS GT.M support.

-resume=<strm_num>

Used when starting a Receiver Server of an SI replication stream with -updateresync in case the receiver
instance has previously received from the same source but had only its instance file (not database files)
recreated in between (thereby erasing all information about the source instance and the stream number it
corresponds to recorded in the receiver instance file). In this case, the command mupip replic -receiv -start
-updateresync=<instfile> -resume=<strm_num>, where <strm_num> is a number from 1 to 15, instructs
the receiver server to use the database file headers to find out the current stream sequence number of the
receiver instance for the stream number specified as <strm_num>, but uses the input instance file (specified
with -updateresync) to locate the history record corresponding to this stream sequence number and then
exchange history with the source to verify the two instances are in sync before resuming replication. Note
that in case -resume is not specified and only -updateresync is specified for a SI replication stream, it uses
the input instance file name specified with -updateresync to determine the stream sequence number as
well as provide history records to exchange with the source instance (and verify the two are in sync).
Assuming that instance files are never recreated (unless they are also accompanied by a database recreate),
this qualifier should not be required in normal usage situations.

-reuse=<instname>

Used when starting a Receiver Server of an SI replication stream with -updateresync in case the receiver
instance has previously received from fifteen (all architecturally allowed) different externally sourced
streams and is now starting to receive from yet another source stream. The command mupip replic -
receiv -start -updateresync=<instfile> -reuse=<instname>, where <instname> is the name of a replication
instance, instructs the receiver server to look for an existing stream in the replication instance file header
whose “Group Instance Name” (displayed by a mupip replic -editinstance -show command on the receiver
replication instance file) matches the instance name specified and if one does, reuse that stream number for
the current source connection (erasing any record of the older Group using the same stream number).

-rsync_strm=<strm_num>

Used when starting a rollback command with the -resync qualifier. The command mupip journal -rollback
-resync= -rsync_strm=<strm_num> instructs rollback to roll back the database to a sequence number
specified with the -resync=<sequence_num> qualifier but that <sequence_num> is a journal stream
sequence number (not a journal sequence number) corresponding to the stream number <strm_num>
which can be any value from 0 to 15. Note that like the -resync qualifier, the -rsync_strm qualifier is also
intended for use under the direction of your GT.M support channel.

-supplementary

New Qualifiers MUPIP Commands

FIS
GT.M V5.5-000

March 20, 2012, Page 23

Used when creating a replication instance file. The command mupip replicate -instance_create -
supplementary creates a replication instance file suitable for use in a supplementary instance. To create a
replication instance file that is suitable for use in a non-supplementary instance, use the same command
but without the -supplementary qualifier.

-updnotok

Used when starting a Source Server. The command mupip replicate -source -start -updnotok instructs
the Source Server to not allow local updates on this instance. This is a synonym for the already existing -
propagateprimary qualifier but is named so it better conveys its purpose.

-updok

Used when starting a Source Server. The command mupip replicate -source -start -updok instructs
the Source Server to allow local updates on this instance. This is a synonym for the already existing -
rootprimary qualifier but is named so it better conveys its purpose.

GT.M V5.5-000
Page 24, March 20, 2012 FIS

FIS
GT.M V5.5-000

March 20, 2012, Page 25

Error Messages and Recovery

See the Error Messages and Recovery Guide and V5.5-000 Release Notes.

GTM_V5.5-000_Release_Notes.html

GT.M V5.5-000
Page 26, March 20, 2012 FIS

	
	Table of Contents
	Summary
	Motivation for Supplementary Instance Replication
	Theory of Operation
	Types of Sequence Numbers
	Database Transaction Number
	Journal Sequence Number
	Stream Sequence Number

	Examples
	Simple Example
	Ensuring Consistency with Rollback
	Rollback Not Desired or Required by Application Design
	Two Originating Primary Failures
	Replication and Online Rollback

	Limitations
	Procedures
	Overview
	Upgrade Replication Instance File
	Creating a Supplementary Instance
	Starting / Resuming Replication
	Changing the Replication Source

	MUPIP Commands
	Modified qualifiers
	New Qualifiers

	Error Messages and Recovery

